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In this paper we consider the behavior of electrons with energy very large com-
pared to their proper energy in their passage through matter, and further treat the im-

pacts suffered by a certain type of hypothetical elementary neutral particle whose
existence was tentatively suggested by Pauli. In the introduction we outline the
problem and the methods to be employed, and give a summary of the formulae which
embody our results. In Section I we develop the method suggested by Manlier for the
relativistic treatment of impacts; in (a) we apply it to the impacts of two free electrons;
in (b) we show how it is to be applied to those impacts of a fast electron in which
little energy is transferred to the secondary; in ('c) we develop the theory of the mag-
netic neutron, and apply Mgller's method to the treatment of its impacts. In II we
give the detailed calculation of the energy transfers from a fast electron to the elec-
trons of the matter through which it is passing, and compute the range and ionizing
power of the primary electron. In III we apply the theory of the neutron to compute
the number and nature of its impacts.

INTRODUCTION

ECENT experiments on the cosmic rays and on the penetrating radiation
produced in the artificial disintegration of beryllium have raised again

the question of the behavior of particles of very high energy in their passage
through matter. Both these radiations have been shown to be extremely
penetrating; and cloud chamber photographs have shown that both are ac-
companied by electrons of velocity very close to that of light; in the case of
the cosmic rays the presence of electrons of energy over 10' volts has been
established. The range of such particles, the number and nature of the sec-
ondary particles produced in their passage through matter can be computed
theoretically. It has seemed to us desirable for a better understanding of the
nature and properties of these radiations to have a more complete theoretical
answer to these questions than is available. We shall, in this paper, be con-
cerned with the behavior of two types of particle; chieHy we wish to study
the electron of high energy; energy large, that is, compared with the proper
energy mc'. But we shall also study the impacts of a certain type of neutron,
a hypothetical elementary neutral particle carrying a magnetic moment. This
particle necessarily has a spin and presumably satisfies the exclusion princi-
ple; its existence was tentatively proposed by Pauli, ' on the ground that by
its introduction certain difhculties in the theory of nuclei could be resolved,
and on the further ground that such a particle could be described by a wave
function which satisfies all the requirements of quantum mechanics and rela-

' Professor Pauli presented the considerations which led him to the introduction and de6-
nition of the magnetic neutron at a seminar on theoretical physics in Ann Arbor in the summer
of 1931.
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tivity. These requirements, for instance, show that an elementary particle can
have a magnetic but not an electric dipole moment; they do not su%ce to fix
the magnitude of the moment nor of the mass of the particIe. Pauli supposed
that such neutrons might form a third element in the building of nuclei, in
addition to the electrons and protons; in this way one could understand the
anomalous spin and statistics of certain nuclei, and the apparent failure of
the conservation of energy in beta-particle disintegration. Pauli accordingly
supposed that the mass of the neutron was not much greater than that of
the electron, and that its magnetic moment was small compared to the Bohr
magneton. One may, however, assume that the neutron has a mass very close
to that of the proton, and that such neutrons are substituted for pairs of elec-
trons and protons in certain nuclei, instead of being added to them; such neu-
trons would help explain the anomalous spin and statistics of nuclei, .although
they would throw no light on the beta-ray disintegrations. The experimental
evidence on the penetrating beryllium radiation suggests that neutrons of
nearly protonic mass do exist; and since our calculations may be carried
through without specifying the mass or magnetic moment of the neutron,
we shall consider the most general particle which satisfies the wave equation
proposed by Pauli. It is important to observe that there may very well be
other types of neutral particles, which are not elementary, and to which our
calculations do not apply; and for clarity we shall call the particle which
satisfies Pauli's wave equation a magnetic neutron. Certain of our results,
such as the relatively great penetration of the particle, relatively rare im-
pacts, and large mean energy loss per impact, characterize the behavior of
any neutral particle.

The collisions and range of beta-particles have been often studied theo-
retically; and even the case in which the primary velocity of the beta-particle
is very close to that of light has been studied by Bohr' in his classical theory
of range. But Bohr used a classical model for the atom and the beta-particle,
and a classical method for treating their interaction; and Bohr's treatment
of the close impacts involving large energy losses is even classically not free
from ambiguity. A very complete quantum theoretical calculation has been
made by Bethe' for the case that the electron has a velocity not comparable
with that of light; and our first problem in this paper is to make this calcula-
tion relativistically, so that it may be applied to electrons of energy very
large compared to their proper energy.

At first sight the semi-classical method used by Gaunt' would appear
appropriate for our purpose. Gaunt's method is semi-classical in that, in the
quantum mechanical expression for the probability of excitation (ionization)
of an atom, the matrix component of the interaction energy between primary
and atomic electrons is in part replaced by a Fourier component, replaced,
that is, by the matrix component for the transition of the atomic electron of
the Fourier component of the potential of the primary electron. For transi-

2 N. Bohr, Phil. Mag. 30, 58 (1915).
' H. Bethe, Ann. d. Physik 6, 325 (1930).
4 J. A. Gaunt, Proc. Cam. Phil. Soc. 23, 732 (1928).
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tions in which the primary electron has a small change of momentum, sma11

energy loss and small defiection, this method constitutes a valid application
of the correspondence principle. And this method is readily extended to high
velocity primaries, since we have now only to take, in place of the electro-
static potential, the Fourier component of the retarded four-vector potentials
of the primary as a perturbation which induces transitions of the atomic elec-
trons. The method is, however, not very elegant, even for the computation
of the probability of small energy losses, because it gives an incorrect and
very large probability of transitions involving small energy losses but large
deHections, transitions to the study of which it may not legitimately be ap-
plied. We shall, therefore, not use this method; but in (II we shall give an
outline of it, because it gives an illuminating insight into our formulae, and
makes clear in a simple way the reason for the increase in ionization power
with increasing energy of the primary. Quite recently Mflller' has given a
beautiful method of treating the relativistic impact of two electrons. This
method is based upon a re6nement of the correspondence principle; it neg-
lects higher powers of the interaction energy between the electrons, and the
effect of radiative forces; but within these limits it is strict and unambiguous,
and enables one to take account, not only of the relativistic variation of mass
with the velocity of the electrons, but of the retardation of the forces between
them, of the spin forces, of interchange and the exclusion principle. The
method is applicable not only to the impacts between two free electrons, but
to the impacts of a free and an atomic electron in which small energies are
transferred; it is further applicable to the impact of a neutron with an elec-
tron or proton; and it is this method which we shall use. In doing this we
may take advantage of the fact that for energy losses very large compared to
the ionization energy of the atomic electron we may treat both electrons as
free; whereas for small energy losses we may neglect relativistic effects for
the atomic electron, and, as it turns out, interchange. For extranuclear elec-
trons there is a region of energy loss large compared to the binding energy and
small compared to the proper energy where the two calculations merge and
agree. For the neutron the probability of small energy losses is small, and
the binding of an atomic electron can be largely neglected.

In )I then we shall give an outline of Manlier's method, and its application
to the three calculations; intimate collisions with an electron, collisions with
a bound electron involving small energy loss, and collisions of a neutron. We
shall have to discuss here the limitations imposed upon the method by the
neglect of higher powers of the interaction energy and of radiative forces.
These points cannot be fully settled without an adequate quantum electro-
dynamics, since they involve questions whose classical analogue is the theory
of the structure of the electron. But we shall see that our method gives an
upper limit to the range and a lower limit to the ionizing power; and we shall
see further that the neglect we have made is small of the order of the fine
structure constant. We shall have to carry the details of the calculation of the

' C. Mufller, Zeits. f. Physik '70, 786 {1931).Further L. Rosenfeld, ibid. 73, 253 (1931).
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impact of two free electrons rather further than was done by Mgller, and
shall obtain a formula for the differential probability of a given energy loss,
a formula which may be applied to the impact of an electron with an atomic
electron for all energy losses large compared to the binding energy.

In (II we shall treat impacts involving small energy losses, and compute
the range and the number of primary ions for a beta-particle. In (III we shall
carry through the calculations of the impacts of a magnetic neutron, and
apply them for a few typical values of the constants characterizing the par-
ticle.

We shall give here a summary of certain of our results. Let the energy
of the primary electron be

and the binding energy of the second electron be I, and the energy lost by
the primary be 8'. We have to consider only collisions in which

E' ~ —', [(e —1)mc' —I]
since one particle has always at least half the initial energy (see 1.32). The
following formulae hold for large e.

The differential cross section for an energy loss E'))I is

27re4 dE' E4+ E'4+ (E —E')"
ada' =

mc' E" 2E'(E —E')' (III)

The angle p between the trajectories of the two electrons after such an im-
pact is given by

y' = (2mc'/E')(1 —E'/E).

If the cross section for ionization of the atomic electron by a primary elec-
tron of velocity v be

o;.„= k, (2v e'/mv'I) ln mv'/k2I

then the cross section for ionization by the fast electron of energy t.mi' is

(IVa)

o.;,„= kq(27re'/mc'I) {ln (mc'/k2I) + 2 ln e } . (IVb)

(IVc)k = 0.29; k = 0.024.

3.
If the mean energy loss to the atomic electron for a primary of velocity

8 1S
8E = (4ve4/mv') lnmv'/keI

then for a primary of large energy

When the atomic electron was initially bound in the normal state of a hydro-
gen-like atom,

8E = (4v e4/mc') {ln mc'/k&I + ('/2) ln c + 0.22 I . (Vb)
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For an electron in the normal state of a hydrogen-like atom

k3 = 1.1. (Uc)

When a magnetic neutron hits a charged particle, the mean energy loss
per impact is of the same order as the maximum energy loss permitted by
the conservation laws. If the mass of the neutron be M, its magnetic moment

p, its velocity small compared to that of light and its energy E, and if the
charge and mass of the secondary be respectively e, and m =KM, then the
mean energy loss of the neutron is

for A=i

bE = (7"e'p'/6h'c') E

bE = ( "2e'p'/ h' c)XE

(VIa)

(VIb)

for X((1.Further details and other cases of impacts of the magnetic neutron
are treated in )III.

NoTE: After the completion of this work, a very interesting paper' of Heisenberg has come
to hand. Heisenberg is concerned with the problem of the nature of cosmic rays; and he de-
rives theoretical formulae for the range of high speed particles with which to compare the ex-
perimental findings. Heisenberg's formula for the range of a fast electron divers only very
slightly from that which we have found (Vb); we do not believe that the application of our
formulae would lead to sensibly different conclusions. Note added in proof: An outline of a
derivation of a formula for the energy loss of a fast electron, by a method also based on
Mgller's and altogether similar to that used by us in II, has been given in a recent paper
of Bethe (Zeits. f. Physik, 76, 283 (1932)).

I. RELATIVISTIC THEORY OF IMPACTS

The method which Mgller proposed for the relativistic treatment of im-
pacts is a generalization of two familiar elementary methods; the nonrela-
tivistic collision theory of the quantum mechanics, and the theory of the
transitions induced in a quantum mechanical system by a known electro-
magnetic Beld. According to the nonrelativistic quantum mechanics, we can
write down the interaction energy t/ of the two particles which are colliding
as a function of the coordinates (and in some cases momenta) of the particles;
for two electrons this energy is just the electrostatic interaction energy. We
can further specify the stationary states of the non-interacting particles by
certain quantum numbers r, p, e.g. , the components of momenta of the two
particles. In the matrix scheme in which these quantum numbers are diagonal
there will be a matrix V„,& which corresponds to the interaction energy.
Then with neglect of higher powers of the interaction energy, and with suit-
able normalization, the transition probability for a transition in which the
one particle changes its state from s~r and the other from 0—+p wi11 be given
by

r„;.= (4 /h)
~

V„,' ~' b(E, y E, —E, —E ). (1.1)

K. Heisenberg, Ann. d. Physik [5,] 13, 430 (1932).
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(The energy of a particle in state r is written Z„; and h(x) is the delta func-
tion. ) Further, when we know the wave functions for the particles in their
non-interacting stationary states

I ~(—2mi/h) .Est
S S

I &(-2~i/h) E~t
(1 2)

we can compute the matrix V„,l':

V„,& =. dade'lN, 'VN, N, '. (1 3)

(Integral over configuration space r, r' of two particles. ) Now when we are
dealing with particles whose velocity is close to that of light, we must of
course use relativisitic wave functions to characterize their stationary states;
there is no difhculty in doing this. For the electron we must use solutions of
Dirac's wave equation; for the neutron we may use solutions of the wave
equation given by Pauli. But the function V no longer exists, since one can-
not, when the retardation of the forces is taken into account, express the
interaction energy as a function of the coordinates and rnomenta alone. What
then, in the relativistic theory, should replace the matrix element V„& ?

We can answer this question if we consider first the perturbation induced
in a quantum mechanical system by a given electromagnetic field. Let the
four-vector potential of the field be g, (x, y, s, t); p=1 4, and the charge
and current density vector of the system be

Then

Jw = g~P

V = —1/cp„j~

(1.4)

(1 5)

is the operator representing the interaction energy of field and system. We
resolve this operator in a Fourier integral

V — V g
—27rivtdg ~ V — ] gp, g27rivtp dg (1.6)

To V„ there now corresponds a matrix in the scheme of the stationary states
without field

U,&' = NpV„p, dr. (1.7)

Here, again neglecting higher powers of the interaction energy, we find for
the transition probability

4ir'/7i
j

V,"i' li(Z —E —hv) ~ (1 g)

Now when the field Q„ is produced by a particle of known trajectory, a tra-
jectory uninHuenced by the reaction of the system upon it, we express the
potentials in terms of the retarded charge and current density J'J' of this
particle:
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(1 ~)

Then

( 1/c2) JI dr j Jt
J&pe2m'&veldt (e2/r) z'&vr/c (1.10)

and the transition probability o~p is given by

with
e2+i vr/c

V„p = ( 1/c&) J)JI drdr'&r j ~
y'pean /r &dt

r
(1 11)

This at once suggests that, when the trajectory of the particle is inHuenced
by the reaction of the system, so that the state of the particle also changes as
a result of the interaction, we replace the Fourier component of the retarded
potentials of the particle by the matrix component corresponding to the transi-
tion in question. Thus if again

~'" = 0j'9
I g(—2mi/h)E„t'r'r — r

are the wave functions for the stationary states of the particle, we have to
replace fJ'"e'I'"'dt by uj ')'u, with 8, Z„=h). —
This gives

I' "= (4)r'/tt)
~

v„,"
j

~ 6(E, + E —E —E )

ps —( 1/cs) Jfjt drdr~g~p~j j ~pe&2nf/hc) &Er e, )rN gg /y— .

(1 12)

This reduces to (1.3) when retardation may be neglected and the velocity
of the particles is small compared to that of light; it reduces to (1.11) when
the reaction of the system on the particle may be neglected.

This is the formula proposed by Mufller. ' Although the derivation of the
formula distinguishes between the system and the particle, the result which
we obtain for V„&' when we reverse the roles of the two

(—1/c') Jl Jr drdr'B, u„j'&j „'e'~'/"'&e~ s~& "I,'tt, /r

gives the same transition probability, and the same matrix to represent the
interaction energy.

We are thus led to consider the interaction energy represented by the
matrix (1.12), V„,&'. One might at first suppose that by the use of this expres-
sion for the energy, and the higher approximations of the method of variation
of constants by which the transition probabilities may be computed, one
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could obtain a strict expression for these transition probabilities. This is not
so, however, because in the derivation of (1.12) the reaction of each particle
to its own field had been neglected; this reaction should be taken into ac-
count in any strict theory, and its omission makes the higher approximations—involving higher powers of the charge or moment of the particles, invalid.
Thus (1.12) gives no account of collisions between the particles in which ra. -

diation is emitted; but we know that such transitions will in fact occur. Their
relative frequency, frequency relative to the transitions in which no radiation
is emitted, is known to be of the order

n(%) ' (1.13)

where n is the fine structure constant, and v the mean velocity of the charges.
This probability can thus be neglected when one of the particles moves with
a velocity small compared to light; even when this is not so, radiative pro-
cesses are presumably relatively rare because of the smallness of n. We shall
see that in our theory of the impact of a high velocity electron upon matter
the impacts in which very little energy is lost are the only ones of importance.
But in these impacts the secondary electron has very low velocities, so that
we know that radiative processes cannot be important in these impacts. For
this reason the results we obtain with neglect of radiative forces furnish a
lower limit to the ionizing power and energy loss of the fast electron. On the
other hand the formulae derived from (1.12) for impacts in which large en-

ergies are transferred may be seriously in error; this error is at least of the
order n.

When the two colliding particles are electrons, (1.12) must be modified
to take account of interchange and the exclusion principle. When the inter-
action energy matrix corresponds to an operator in configuration space, it is
known that this may be done by writing for the interaction energy

Q U„,"a&+a„+a,a. (1.14)

and by treating the a's as dynamical variables which satisfy

apa, + a.a„= 0
ap+a~ + asap+ = 6po1

g +g + + g +g + = 0
(1.15)

The order of the a's has been so chosen that the interaction of each particle
with its own field has been eliminated. Now although U„,p' corresponds to no
operator in configuration space, and there is no wave equation in the con-
figuration space of the two particles with which to compare our results, we
still take (1.14) to represent the interaction energy. Since each a„+ corre-
sponds to a transition in which a particle enters the state r, and each a„ to
one in which a particle leaves the state r, there are now four terms in this
sum which give rise to a transition in which the two particles go from the
states s and o. to r and p. Because of the symmetry of V„,p', these four terms
are equal in pairs; for the transition probability we find, in place of (1.12)

2'„"= (4~2/h)
~

U„,"—U„,"~~~(Z„+ Z, —Z, —a). (1.1fi)
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In dealing with the impacts of a fast electron on an atom, it is easy to see
that when the energy transferred to the atomic electron is small the inter-
change terms in (1.16) are negligible; for such impacts we may use (1.12) in
place of (1.16).

We have now to apply these formulae to the three cases: (a) Impacts of
two free electrons. (b) Impacts of a fast electron with an atomic electron, in
which little energy is given to the secondary. (c) Impacts of a neutron with
an electron or proton,

(a) High velocity impacts of free electrons
To apply (1.16) to the impacts of two free electrons we have to write down

explicitly the wave functions for the stationary states of the free electrons
and the expressions for the matrix components of the charge and current
vector. The states of each electron we may specify by giving the components
of momentum

~(1) —
(p (I) p (I) p (I)) ~ ~(2) —(p (2) p (2) p (2))

and the component of spin 0.(", 0 "& of each electron in the s direction. (We
exclude states of negative energy; and to the approximation here considered
this causes no ambiguity. ) For each of the electrons we take the wave func-
tions to be solutions of the equations

( 0 0 0 1 ) (0 0

0 1 0 0 0

0

0 1

( 1,0

Ay
0 0

0 0)
0 —i

o o

(0 0 1 0)
0 0

1 0

0 —1

0 0

&0 —1 o 0)

( 1 0

0 1

0 0

(0 o 0

The solutions of these equations we write in the form

j j&(22ri/Pc) f(~ r)—E&j~ 2)(r p(r

with
E = c(2)22(:-' + p')'"

I(h(2)ri)(()/Bt) + (hc)(22ri)(n grad) —n2222(;2])p = 0

in which for each electron we take the n's in the familiar form

(1.17)

i )
0

0

0
(1.18)

0

0

1j

(1.19)

and with the a„.' functions of (~, 0). For an electron initially at rest we take
for the a2;
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These states will be characterized by an index (0). Thus

~&') = 0, E&'& = ere'; o-&') = + 1; etc.

This wave function represents a uniform electron density of one electron per
unit volume. For an electron moving in the s direction we take

02 = 04 = 0

a4 = —Xp,/g
a3=N

cy = 03 = 0

as = Xp,/g
a4= 1V

(1.21)

where

and

g = 444c + E/c

~' = 2g (g' —4r4'c4)4t'.

These states will be characterized by a superscript (i). This wave function is
normalized to represent a stream of unit Aux, so that the transition probabili-
ties computed from it will give directly the cross section for scattering.

We may without loss of generality suppose that after impact both elec-
trons are moving in the xs plane, since, as we shall see, momentum is con-
served in the impact. For such an electron we take

a4 ———Ep, /g a4 = —il"pg/g

aq = —Ep,/'g aq ——Sp,/g (1.22)

a3 ——g
a4=0

a3=0
C4= g

where

and

g
= 4r4c + E/c

ly' = —gc/2Eh'.

These states will be characterized by superscripts (1) and (2). This wave
function is normalized to dp, 4Ep„dp, =dp. We shall need the Jacobian

Ju) —4l(p o) p (1) p (4))/cl(g(n + g(2) y(1) y(1))

where, by the conservation of momentum,

g(2) (p(&&) —Q(&) (p(4) pe))

We 6nd

2mp("E")E(" sin y&')

mc'(1 + cos' p'"') + Z sin' p"'

(1 2~)



IMPACTS OF FAST ELECTRONS 773

Note: There is at this point in Mf&ller's paper an error, in that M&&lller uses in

place of j'
j(&) —

&1(p (1) p (1) p (&))/c (go) y(1& y()))

Now J'4 J('), because by the conservation laws E(') depends on P('). It
is J"& that we must use to take out the 5(E&0)+8&'&)—(8&"+2(2&) in (1.16).
We are indebted to Dr. Heisenberg for tellung us that M)11er had found an
error at this point in his paper.

Further the charge density is given by

c Qp&'&p&' (1.24)

and the current density by

ec Q&p'(2j&0&p". (1.25)

If we put these expressions in (1.16), we find for the transition probability
from the intial states 1(1.20) and (1.21) ] of the two electrons to states

&(I) ~(» &(~)~(»

such that
g(I) + g(a) g(O) + jV(s)

the expression

Here

4h e J& &

~

r4
~

2
Jl

drC2r'(0&&p&'& p(1&—p(2&& 'r) dp(2&@&)&d&)&())

&1„0&2,0' —(A) „"A2, 0)

~

p&'& —p&'&
~

' —(1/c2)(E&'& —P&)&
~

'

~&,00~2„0 —(&, , 0 A2„)

~

gj(o p(2)
~

2 (1/c2)()&& (1) 7& (2))2

(1.26)

(1.27)

Q(21(p(1) &1(1))&2)'(p(0) &r(0))

Now

4

Q&)1'(p(1) &1(1))crjp()2(p(0) p (0))

j,k=1

Q = lim t drc(2r(/0) (&p('&—p('& —p&2&& r) ~ P&&&(p(o p()& —p(2&) (1 28)
p-+ (o

Thv. s momentum as we11 as energy are conserved, and we may set

~ (&) —~(t') g)(&) (1.29)
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Further if we divide (1.27) by V we get the cross section for impact with a
single electron at rest. In (1.27) we have to consider all the possible orienta-
tions of spin of the two electrons in initial and final states: to take one fourth
the sum of (1.27) over the sixteen combinations of values of 0 &", &r "&, 0 &", &r&".

The resulting cross section can be expressed as a function of c and 8, the
angle of deHection of one of the electrons; it is independent of the azimuth
of deflection of this electron; and all the components of momentum are de-
termined by the conservation laws when 8 and p are given for one electron.
Before carrying out this reduction we may make a few observations on the
geometry of the impact.

According to the conservation laws, if the two electrons after impact have
direction of motion making the angles 0 ~, 8-2 with the s axis,

P "& sin QI ——P(" sin g~.

Further, the energy of a particle coming off at an angle8 is

2e —(e —1)P' n = cosa;E' = mc'
2 + (e —1)P' &3

= sin&1;

(1.30)

(1.31)

and the absolute value of its momentum is mc[2n(s' —1)' ']/[2+(s —1)&3'].
Thus the particle with the smaller energy always comes o6 at a larger angle;
when the energy is shared equally the two particles come off at the same
angle B„such that

sin'&7„= 2/(e+ 3). (1.32)

In general the angle y between the particles is

~gv = [2 + (~ —1)&3']/ [(~ —1)~&3]

which reduces to
p' = (2mc'/E')(1 —E'/E)

(1.33)

(1.34)

for large s. [Here E' is the smaller of the two energies E"', E"&.] In no im-
pact do both electrons come off at an angle larger than 8; and since (0. 7)
gives the probability that an electron come off at an angle 8, and the other
at the corresponding angle determined by (1.30), we have only to consider
impacts in which 8 8; impacts in which 6 &6 will be the same impacts
as those for which 6 &8, but in which the angle 8 refers to the slower and
not the faster of the two electrons.

We shoukl note that by (1.34) the angle between the electrons grows small-
er as the both the primary energy and the energy transferred grow large
compared to the proper energy. This point is of some importance in c»nec-
tion with the interpretation of cloud chamber experiments, since it leads us
to expect that very high energy secondary electrons produced by elastic im-
pa«with high energy primaries will come off nearly parallel to the direction
of the primary.

We shall let then' be the angle which the faster of the two secondary elec-
trons, for which we use (1), makes with the primary direction. Further we
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shall write n=cos 0, P=sin 8, q= (» —1)&3'. Then the conservation laws give
us the relations

P "' = —P '" = [(»' —1)""~&3/('+ q)]~~

P &" = (»' —1)"'mc

P &» = [2«»(»2 —1)«2/(2 y q)]&&&»

P &» = [(»» —1)&&»(» + 1)P~/(2 + q)]&r&&,
-

j
g)&o —~&»

~

& —(1/»2)(g&o —g&»&)2 = [2(»2 1)P2/(2 + q)]&&&2&»

I

p"' —p"'
~

' —(1/ ')(E"' —E"')' = [4(» —1)n'/(2 + q) ]rN'c'

g&'& = [(4+ (» + 3)q)/(2 + q)]»&c

g&'& = (»+ 1)»&c P&" = [2&&;(»' —1)"'/(2 + q)]mc (1.35)

g«& = [2(»+ 1)/(2+ q)]»&c E«& = [(2» —q)/(2+ q)]»&c'

Thus we get for the differential cross section,

&r»4 (»+ 1)'a 4+ (»+ 3)q + 1.(0)
ada = —— — —— Gu

2(» —1) (2 + q) &0& &I& ~& ~&2& (» + 1)P

M&r '
(1.36)

20!

Here each of the L(&r), M(&r) refers to a different one of the sixteen possible
orientations of electron spin; I.(0) is the direct term, M(&r) the interchange
term. The I. and 3I can be tabulated as a function of e and 8. We write

y = (» —1)/(» + 1); 5—' = 4 + (» —1) (» + 3)P'

~(O) t7-(i) 0-(1)»7 (2) L{0.) u( )

+
1+y0"—(1+~')(~' —1)P'5

1 +yn2+ (q —1)[4n2P2
-{1+-)(.+»WS

+
+ 20'p(& —1)(2+q)5

1 —y~'+(&' —1)P4S

—2ya2[1+3a2+ eP']5

+ 2npy[2 (a+2)a'+ (a+1)'P')S

+2~P(~ —1}(1+ '}S

+ 43PyS

y 2~pgS

+2~Py[2~'+(c+1)P']S

(1.37)

+ 4y~P(1+.P2) S

2~'g5

+ 2ynP[40. 2+ (a+1')P']5

2'gS

—2g (1+A/2) 5 1 —y~'+g[4~'+ (&+1)P']5

For large e the last six contribute nothing to the cross section; the first four
are important for energy losses not large compared to the proper energy;
the next four are important for all energy losses comparable with the proper
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energy; the next two are important only for energy losses comparable with
the primary energy. From (1.35) the energy transferred is

E' = mc'(e + 1)q/2 + q.

We must consider only impacts for which

(1.38)

(1.39)

For these the differential cross section is given by

2me4 dE' E4 + E'4 + (E —E')4
OdE

mc' E" 2E'(E —E')' (1.40)

This concludes our study of the impacts in which large energies are trans-
ferred. Certain further calculation by this method, primarily for the case of
smaller e, were given' by Mflller; and there, too, the connection between cer-
tain results of this calculation with earlier attempts at the calculation of
impacts were given. One point we may mention here: when e is not large, we
may use Rutherford's formula to give us the differential cross section for en-

ergy loss,—or rather the nonrelativistic quantum mechanically extension of
Rutherford's formula which takes account of interchange and the exclusion
principle. This gives, for Z'(&B,

odE' = 27re4dE'/EE" (1.41)

This agrees with our result for energy losses small compared to the proper
energy; but for larger energy transfers it gives too large a cross section. When
higher powers of the interaction energy are not neglected, terms of the order
of the 6ne structure constant must be added to (1.40). fn the case of the
nonrelativistic calculation (1.41) these are only of importance when E' is
of the same order as B; and presumably, although not certainly, these terms
will not be of importance for large c except in this case 8' B.

(b) Small energy transfers to bound electrons

We have now to consider the case that a primary electron of very large
energy gives to a secondary which was originally bound in an atom an energy
not comparable to its proper energy. The states for the primary electron are
still given by (1.21) and (1.22); but certain simpli6cations are introduced
even here by the fact that the energy of the primary changes very little. For
practically all such impacts involve a very small deflection for the primary;
and in their treatment it is legitimate to neglect quantities which are small
when the primary momentum changes by a relatively very small amount.
With this understanding we see that only the matrix components of the
charge and current of the primary in which the spin of the primary does not
change are important, and that these are independent of the original orienta-
tion of the primary spin, which we may thus take parallel to z. (Case 0 = +1).
Further the components of current, and thus of vector potential, in the xy
plane, are negligible. We have to consider only the scalar potential and the s
component of the vector potential of the primary.
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There are two further simplifications. In the first place interchange is
negligible (interchange terms are important in general only when the energy
transferred in of the order of the primary energy); we may thus use (1.12)
in place of (1.16). In the second place the secondary electron never gets a
velocity comparable with that of light, so that for it we may use nonrelativis-
tic wave functions and expressions for charge and current density; and we
may neglect the spin of this electron. On the other hand we may not use wave
functions which neglect the binding of the atomic electron, and must replace
for it (1.19) and (1.21). Let the initial energy and wave function of the elec-
tron be

g(0) I ~ f e(27ri/h)l tg (1.42)

After the impact the atomic electron may be excited or ionized. Let the corre-
sponding energies and wave functions be

,I, —e(—27ri/h)E„tt~~nl ) ynl

e(—2m i/h)Etl
) El Ei)

(1 43)

where l stands for the two other quantum numbers in addition to the energy,
necessary in the most general case to specify the state of the electron. Further
let the continuous wave functions for energies above the ionizing potential
be normalized in the energy scale.

The expressions for the charge and current density are then simply

J = (e/2&r&) [(h/2&ri) (P grad P —P grad &T) (1.44)
—(2e/c)QAQ] (eh/2m i&&&)P grad g .

The terms in the vector potential A are of higher order in the interaction
energy and may be dropped.

If as before we let the primary electron be deflected in the plane, and call
the angles of deflection again &7, &t&, we get from (1.12) for the probability of
excitation to a state n, l:

4~2e4
if dyd4J '

f
V„»"'j 1'I —g 2

h4C J3
V„&»"' = if ~dr, dreu„&(rg) exp I 2 i/&hr[([p & —&p&» j r&)

—(1/c) (E"' —E&'&)r I [1 —h/2~i»&c(a/ae2) /r ]u&&(r,)

(1.45)

and for the probability of ionization to a state of energy in the range dE

4'�'e4
o@dE = dE t d&'id'&'& g f

V &»

h4c

(1.47)E' = z„,+ z, z' = z + I

To get the total probability of excitation or ionization these expressions must
be summed over n, l; to get the energy loss per impact they must be multi-
plied by
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and summed over I, summed and integrated over n and J'". In the next section
we shall evaluate these expressions as far as possible when we leave the atomic
wave functions arbitrary; and we shall evaluate them in detail for the case
that the wave functions are those of a hydrogen like atom. From them we
shall find, for the differential cross section for an energy loss 8' large com-
pared to the ionizing energy I,

cdE' = 2+e4dE'/rgc~E''

in agreement with (1.40); but for smaller energy losses we shall obtain results
which di6er very markedly from those given by (1.40).

(c) Theory of magnetic neutron

For the impacts of a neutron with a free electron we have again to use
(1.12). Here the wave function for the electron before impact is given by
(1.29); that after impact by (1.22); and the charge and current density of the
electron by (1.24—5). We have only to find the matrix components of the
charge and current density of the neutron.

The wave equation proposed by Pauli' for the magnetic neutron is simply
related to the Dirac equation for the electron. In the absence of a field this
latter may be written

[y&p„—inic jp = 0; pi = (—h/2iri)(B/Bt); po = (h/2iri)(B/Bxi);
(1.48)

7 2) 3
where the y& satisfy

v"v" + v"v" = 2~p' (1.49)

In the absence of a field this equation is to hold for the magnetic neutron,
except that the neutron's mass M must be substituted for that of the electron.
In the presence of a field new terms are to be added to the wave equation:

[q~p„—iMc+ I'Iy = 0; I' = k~~"F„„ (1.50)

Here F„, is the field tensor,
= 'Y"7 'Y 7"

and I(: is a constant which is related to the magnetic moment p, of the neutron:

K = p/4c. (1.51)

These terms are not altogether arbitrary. Thus 0.» must be an antisymmetric
tensor; it may not involve the coordinates nor powers of the momenta higher
than the first. Thus (1.50) turns out to be the only hermitian not identically
vanishing possibility which involves the field strengths linearly. The fact
that z is real is required by the hermiticity of the term; otherwise one could
not interpret the wave function of a particle which was conserved. The sign of
the term is arbitrary, and determines whether the magnetic moment of the
neutron is parallel or antiparallel to its spin.

From (1.50) one may deduce two conservations laws. One asserts that
the divergence of the four vector

&" = 4+v"0 (1.52)
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vanishes, and gives the conservation law for the neutron density. The other

BJ&/Bx& = 0; J" = (—ii/2)(8/8) x"(4+ 0"" 4) (1.53)

gives, as we shall show, the conservation of the charge and current vector.
The two four vectors-particle density and Hux, charge and current density,
do not, as in the case of the electron, dier merely by a constant factor.

The first justification for calling p the magnetic moment of the neutron
we obtain if we reduce (1.50) for the case of velocities small compared to that
of light. We find then that the neutron is described by a two-component wave
function which satisfies

I(h/2irz)(8/Bt) —h'/8m'MA + IJ(H 0)]4 = 0.

Here the 0's are the Pauli spin matrices

(1.54)

(1.55)

and H the magnetic field. This is just what we should expect for the wave
equation of a neutral particle carrying a spin and a magnetic moment p.

A further justification for calling p the magnetic moment of the neutron
we can obtain by showing that

(1.56)

does correspond to the charge and current vector. For if we calculate the
potentials and field strengths of a wave packet moving with low velocity by
using (1.53) for the charge and current vector, we get just the field we should
expect for the neutron of magnetic moment. Here as in the case of the electron
the components of momentum do not completely specify the state; we need
also to specify the orientation of the spin; and by doing this we determine the
orientation of the field-producing magnetic moment.

We can verify that (1.53) is right in the following way. The wave equa-
tion (1.50) and its adjoint equation may be obtained by variation of Q+ and @
in the Lagrangian.

1. =
JI

dVP+IP~P„— i3Ic + ii~~"F„,]y. (1.57)

If we add to (1.54) the Lagrangian of the empty electromagnetic field,

(1/16ir) JI dVF&"F„, (1.58)

and in this vary, precisely as in the familiar case of the electron, the poten-
tials, we get in place of Maxwell's equations for the empty field

BF""/Bx" = 4' j~ (1 59)

with J& given by (1.53). Thus, as far as the field produced by the neutron is
concerned, J" given by (1.53) acts like the charge and current density. It is
a four vector, and its divergence vanishes.
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It is convenient to rewrite the Eqs. (1.50) in the form corresponding to
(1.17). Thus for the free neutron (no field), we get

[(h/21&i) (8/Bi) + (hc/2)ri) (a grad) —&)&o3Ec' j)P = 0

where the n's are given by (1.18), if we take

7 = ~0' Y
= iofOollj 4' =l

(1.60)

(1 61)

The density current four vector then becomes

ff, CI1t'0' (1 62)

The neutron density is, as it must be, essentially non-negative. The terms
corresponding to I' in (1.50) then become

ZAOKO~ Pp»

and the charge and current vector is given by

(1.63)

(1.64)

Here the four row matrices lto" are given in terms of the Pauli spin matrices
(1.55) by

~»=0

~l4 ~4l

—s„, 0
~kl — ~l ls

0 s

(1.65)

Here (h, 1, r)1) are a cyclic permutation of (1, 2, 3). This expression must
be used in (1.12) to compute cross sections for impacts. For the states of the
free neutron we may again use the wave functions (1.20) and (1.21). In place
of (1.27) we find

16)roheo&&oJ &"
~

8
~ oQdp &o&ao7 &'&dO& &"

where Q is given by (1.28) and where now

Ao, o'T), &' + (Ao, o2'(, 1)8 —--
~

p&'& —p& &

~

o —1/c (E&'& —E& &)o

Here the A's are given by (1.27) and the T's are defined

+ar(p(1) a(1))T Vvva)v(p(1)a(1))11p v

(1.66)

(1.67)

. —~(I) ~(I.) ~

Dp, ;4 = —(1/c)(8&v& —E&'&)

(1.68)

As before Q—+U5(p&'& —p&'& —p&'&).

We can write the cross section for a particular set of spin orientations

167rohe')ioJ&"
~
B(0) ~'d(7&'&dljl&'&. (1.69)
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~dydy = 4~~he~&V(»

As before we must take, to find the differential cross section, one fourth the
sum of these expressions over all sixteen orientations of initial and final spins:

~
a( ) ~

day. (1.70)

The quantities T occurring here may be tabulated in terms of the initial and
and final momenta and energy of the neutron. If for brevity we write

P ( ') —y P
(&') = r P (&) —

P (1.71)
g"' = g' ~r=r —r'; ag=g —g';

then we find for the T's the following values:

g (&) g (I)

+ +
i~r(rP'/ga')+~~aP'/a' + P'(j —«'laa') + &rP. '/g g'+ ~gP'/a

~(') ~0)

(+ rP "/g g')+~r(&+«'/ga')
+hr(rP'/gg '+ id g((r/g) +r'/g ') +ha((r/g) +r'/g ')

T4
—(1.72)

+ +
(—iP' r/gg') —z~g((r/g) —r'/g')

+
+ +ip'(j +«'/g g') +~~ap'/g'

( —iP "/g'')+~~r((rig) —r '/a')

+ ip'(r/g)+r'/g') +iarP'/g'

It is not possible, without knowing the mass of the neutron, to reduce these
expressions further. We shall, therefore, postpone until (III the discussion
of' these formulae. There, too, we shall make such elementary investigations
of the effect of the binding of the electron as are necessary to our purpose.

Before proceeding to the further application of this method of Mpller,
we wish again to emphasize the approximate character of the method. We
have throughout neglected two things: the reaction of the particles to their
own field, and all radiative processes; and higher order terms in the interac-
tion of the two particles. In the case of the electron, both these neglects
mean the omission of terms of the order of the fine structure constant, terms
which are genuinely small unless both particles involved are moving with
velocities comparable to light. Just what effect these terms could have on the
things in which we are most interested —range and ionizing power of the pri-
mary, energy distribution of the secondaries —we shall discuss when we have
our results before us. But the formula (1.40), which is derived with neglect
of these, terms, is subject to grave doubt, since we have no assurance that
terms of the form ea will not appear, and no physical assurance that in the
intimate collision of two electrons this approximate method can be legit-
imately employed. It seems at present by far the soundest method available,
and perhaps experiment can show in what measure it is inadequate. The fur-
ther study of impacts involving neutrons, a study which should not neglect
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higher powers of the interaction energy, presents even in the nonrelativistic
case serious analytic complications; and we have not thought it advisable to
attempt these without some more certain information about the characteris-
tic constants, in particular the moment, of this hypothetical particle.

II. IQNIzING PowER AND RANGE oP FAsT ELEcTRoNs

We must now consider in detail the small energy losses suffered by a fast
electron in its impacts with an atom. Just as in the nonrelativistic theory, if
we neglect the binding of the atomic electron we find an infinite probability
for small energy losses; and just as in the nonrelativistic treatment the proper
consideration of the binding gives us a finite probability of energy loss and a
finite range.

Before using our formula (1.46) to study these impacts we may outline
briefly the semiclassical method of treating this same problem. This method,
it will be remembered, is valid only for such impacts as involve small energy
loss and small deflection of the primary; in this method we treat the primary
particle classically, neglect the reaction of the atom upon it, and use the field
calculated for this undeflected trajectory as a perturbation causing transition
of the atomic electron. If we choose our coordinates so that the particle passes
along the s-axis, and goes through the origin at t =0, then the field of the par-
ticle is given by the potentials

A, = Ap = 0; 2, = (evp/c) [xp + yp + pp(s —vt)'j —"/',

ep[v2 + yp + pp(s vt)2j
—//p.

where v is the velocity of the particle and

1/p = (1 —v'/c')"'

(2. 1)

The probability of a transition of the atomic electron in which its energy
changes by E' is determined by the Fourier component of this field of fre-
quency v' =Z'/h. We therefore analyze the potentials by a Fourier integral:

(4e/c) I Zp(2v vp/pv) cos 2v v(t —s/v)dv
0

/t
= (4e/v) Ep(2prvp/pv) cos 2prv(t —s/v)dv

0

where Xo is the Hankel function:

cos Xd)
&p(E) = —;and p = (x'+ y')'".

(gp + (2) 1/2

The perturbation energy for the atomic electron is given by

V = ey —(1/c)a,q,

(2 2)

(2.3)

where j is the current operator which, to a sufficient approximation, is given
by (1.44):j.= (ke/2pr//tv')8/8s Thus the. transition probability for an atomic
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transition n —&n' in which the energy of the atom changes by E,'=8„—8„
= hv' is just

2

P = (4~'//p) J[~„'(2e'/v) K,(2v v'p/ev)e' '""'[1—(hv/2v inc') 8/Bs] m„dr (2.4)

where the I's are the wave amplitudes for the atomic electron. The nonrela-
tivistic expression is~

4m
2' 2e~ 2~v' p

j N„xo — e"'""~"u„d»
h' J v v

(2.5)

Now for distant collisions, to which alone this method may be legitimately
applied, we may expand the potentials about the position of the nucleus of
the atom, which we take to be on the y axis at a distance from the track,
and consider only the first two terms of the expansion, i.e. , the dipole moment
of the atom. If we let the y-component of the displacement of the electron
from the center of the atom be f then we find

P„„(p) = (16+' 4/eh' )v~ f„,
~

'[X'(2vv'p/vc)]' (2.6)

where X'($) =BXo($)/8)and f„„=fl,„iu„dr The no.nrelativistic formula is'

P„„'(p) = (16v'e4/h'v')
~

i„„'~ '[K'(2~v'p/v)]' (2. 7)

Thus in this calculation the effect of retardation is to introduce p/e in place
of p in the argument of X'. Since K' is a rapidly decreasing function

E'g) 1/$ for $ —& 0,

It'(&) —(v/2&) "~'e &for (&-) ~ ~, (2.8)

this means that for a given transition and a given position of the atom the
probability of a given energy loss is increased by considering retardation;
energy losses occur at greater and greater distances from the track as the
velocity of the primary approaches more and more closely that of light. We
are, therefore, led to expect a greater number of low velocity secondaries
than we should find from an extrapolation of the nonrelativistic formula;
and this is just what we shall find. It is an immediate consequence of the Hat-
tening out of the field of the electron in the equatorial plane.

As the position of the atom approaches the track, p—&0, and the total
number of transitions becomes infinite. For these intimate collisions the ex-
pansion of the potentials about p and the assumption that the track is unde-
flected are both illegitimate. There are a number of ways in which, for small
energy losses, we might try to modify the calculation of these close impacts,
in such a way that the integral over p converges and gives a finite result. Per-
haps the simplest is to stop the integration at a point p where, according to
(2.6), the probability of inelastic impact is unity. This point turns out to be,
for a hydrogen-like electron, of the order of the Compton wave-length divided
by the effective nuclear charge s:

p = 1.4h/2vmcs h/27rnzcz. (2. 9)
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This procedure gives for the mean energy loss due to small energy transfer,
small compared to the proper energy,

(&E = (4)M4/mc') ln (mc'e/W) (2 1O)

where TV is of the order of the ionizing potential I, and for a hydrogen like
atom is 8'=3.0 I. This result is in remarkable agreement with that which
we shall obtain by our strict calculations with the help of (1.46); and it is
of some interest to inquire into the ground for this. The answer is very simple.
We shall see that in our strict calculations (2.6) is right for distant impacts,
impacts, that is, in which the deflection of the primary is negligible. For
angles of deflection 8 which are much smaller than

@ = (2mI)'"/mce (2.11)

we get just this result (2.6), if we connect 8 and the parameter p by the dy-
namical relation p8 e'/mc'e. For larger@ i.e. , smaller p, the transition proba-
bility for transitions involving small energy loss decreases rapidly, instead
of becoming infinite as it does by (2.6). Thus it is approximately right to
break off the integral over p at a point

p ~ (e /mc e)&)~ (h/2)rmce)

and this is what, in these preliminary calculations, we have done.
We must now turn to the strict calculation. We shall here be dealing only

with small energy losses, and since our expressions converge very rapidly as
the angle of deflection' increases, we have only to evaluate them for smally.
As before, we shall assume throughout that e is a large number, and neglect
higher powers of 1/e. We need to know the change of momentum of the pri-
mary in terms of the energy lost E'and the angle of deflection 8. Thus, with
these approximations,

Further

p &'& —p (" = E'/c p "& = Ey/c.

I
p"' —p"'

I

' —(1/")(E"+ E'~')
(2.12)

p&"
I
' (1/c')(E' E&")' —(1/c')((E '/c') + E'5') (2 13)

c)(p (&) p (1) p (&)) p(1)E(&)
J(') = - = -- ——sing m'~'c sin8.

B(E, (1, y) c' (2. 14)

We start with the formulae (1.45), (1.46):

V„&»"& = Jfdr&dreu„&(re) exp {(2&ri/f&) [([~&'& —~&»] r&)

—1/c(E&" —E&")r] I [(1 —()e/2&rime)8/Be)u&&(r2) ]/r
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In all cases the matrix integral may be written as the product of two in-
tegrals if we replace throughout

rl = r2+ rI2 ~

Thus

(2. 15)
where

p (p&") = jf(dr/r) e}&p {(22r2/h) [([p")—p")] r) —(1/C)(E"' —8&")r] I (2.16)

and

2' i
z (, ) p'") = )fz . *2 ((z" —z"') )]I(—(z/2 iz/c ) '(2. ())

The former integral may be evaluated at once, and gives just, by (2.14)

p (P{l})—(h2e2/2). ) 1/((g)2/22) + +2&12) (2. 18)

The second integral may be considerably simplified, for it may be replaced by

p2 = dry„~e i / No, with y = 2xmce sin @ h. (2. 19)

We may see this in the following way. We may expand

exp {(2«2/h)([p"' —S "'] «) I

in powers of 8:
27ri 27r2

~ (2+i//Ac) E'z f gg +9y2 .
bc h'c'

In all terms but the first the factor

e&' '/"')E" [1 —(h/2)rz//2e) (8/BE) ]

(2.20)

(2.21)

gives a correction of the order, by (2.12), E'/mc2 which is small of the order
(2)/c)2 for the atomic electron, and negligible. If we neglect (2.21) in the first
term the integral vanishes; and we have to show that here, too, this neglect
is justified. But now the integral

Jfdrl le&' '/"') "[1—(h/22(22}2e)8//}s]N() (2.22)

is just the matrix component of a perturbation produced by a field of poten-
tial

0. A ( e2zzc&)//z' Ez—c&l) . 4, e(2zzz//z)E'(z —cl) (2 23)

These potentials may be derived for the scalar

I//2« 2&e (2 z'z/hc) E' (z cz)— (2.24)

by differentiation A =grad /1; &/)
= —BA/()))!. They thus correspond to no field;
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and the corresponding matrix element vanishes. (This may be verified by
direct calculation as far as the dipole moment of the atom is concerned. )

The transition probability is thus given by

) '[1/('+ ')'] (2.25)

with 71 = 27I E /hce and p 2(n, t, y) =fdru„, e "*uv Th. is expression may, of course,
be evaluated when we know the u's. We shall not need this evaluation to
calculate the energy loss of the primary; but we do need it to compute the
probability of ionization; and it is instructive to have the explicit expressions.
We shall consider the very simplest case of an electron bound in the normal
state of a hydrogen-like atom, with an effective nuclear charge s; we shall
calculate o for transitions to the continuum. We need to introduce the length

1/b = h' /4 v' vvez' (2. 26)

and the quantum number

u = 1/bk = 27re'z/hv; k = 2rmv/h; v = (2E/ru)'~' = [(2/tu)(E' —I)]"'(2.27)

which measures the energy of the secondary electron. If we now use parabolic
coordinates with the pole along the x axis, and use the well-known wave
functions for the hydrogen-like atom in such coordinates, we can evaluate
not only pz, but the sum (integral) of pz j' overall states f of the same energy.
We thus find

z"7r'rrbb' exp [—2utg '2kb/(b'+ y' —k')]
Zlp. (., f, ~)I = ———

h' 1 —e

~9 [~z + (b2 + ke/3]

I [b'+ (v —k)'1 [b'+ (~ + k)'] I
'

(2. 28)

For very small energy losses

(2. 29)

the integrand G(y) of the expression for the transition probability de-
creases with increasing y, and becomes very large for y—&0. For small y
G(y) y'/(y'+tP)' whereas for larger y»b; G(y) y ".Thus the transition
probability begins to fall oK more rapidly with increasing angle of deflection
when the angle grows of the order

= hb/2xrnce. (2.30)

This is the result quoted before (2.11) in connection with the semi-classical
calculation. In this earlier calculation we neglected higher powers of y higher
moments of the atomic electron —and thus replaced e 'y by 1 —iyx. And this
reduced expression becomes wrong when y b, 8 D.

For energy losses large compared to the ionizing potential the value of G
for y~o grows very small, and the integral over y comes entirely from the
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region y'~k'; with neglect of higher powers of I/E' the integral may then be
evaluated, and gives just

odE' =. 2oe'dE'/mc'E" (1.40a)

This agrees with our result (1.40) for the energy loss to a free electron for

We may use (2.28) to compute the cross section for ionization. For (1.40)
gives a negligible contribution for high energy losses, and we do not need here
to supplement it with the result (1.40). We so find, carrying out approxi-
mately the quadratures over y and 8 for the cross section for ionization

o;,„=0.29(2ire4/mc'I) ln (mc'e'/0 024I) ..

The nonrelativistic result is, for this case of a hydrogen like' atom

o;,„=0. 29(2rre4/mo'I) ln (mo'/0. 024I)

(2.31)

(2.32)

where o is the velocity of the primary. The two diifer by (1.2s e'/mc')Ine for
v~c. The constant 1.2 is here computed only for the simple atom which we
have considered; it depends upon the f-values for the atomic electron, and
no universal closed formula can be given for it. We may get a somewhat more
general result by comparing our formula with the nonrelativistic one. For
(2.25) differs from the corresponding nonrelativistic formula in three points:
(1) In the nonrelativistic formula c is to be replaced throughout by ri. (2) In
the nonrelativistic formula the quantity ri in the denominator of (2.25) is to
be replaced by ri' = 2irE'/kv. (3) The upper limits of integration for y and E'
are greater in our formula. This third difference is not essential in computing
the probability of ionization, since high energy loss impacts contribute rela-
tively little to this probability. Now the nonrelativistic formula may always
be written'

By (1) this becomes

o",.„= k, (2s e'/ m)sin (mo'/4I) .

ki(2me4/mc'I) ln (m. c'/k2I),

(2.33)

(2.34)

and (2) may be taken into account in the following way. For the range
0 ~ y ~ i1', y/b is small, and we may write

Thus the term to be added to the nonrelativistic cross section is

16'�'e4
dE+l z, ,

l

~ »—
h'c' l

(2»)

But the nonrelativistic cross section (2.34) itself may with s=c be written

16m'e4 7sc
dE Z I

'si. el '»
o
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1 e, hi=(8s'rrrI/h') Je"dEQ~ i&era i' Thus our result is

rr;,„= k&(2s.e'/mc'I) ln rlc'e'/k2I (2.36)

This shows that the number of ions produced by a fast electron increases
as its velocity approaches that of light. The ionizing power passes through a
minimum for e 3; the increase is very slow; if we use the value of k2 given
by (2.31) for a hydrogen-like atom; and if for air we take I to be about fifty
volts, then the number of ions is double the minimum value for electrons of
c 10', or energy of the order of 10' volts.

To compute the mean energy loss, and thus the range, of the fast electron,
we might again use the hydrogen-like atomic model, and supplement (2.28)
with the corresponding expression for the probability of excitation. But here,
too, it is simpler to compare our expression (2.25) with the corresponding non-
relativistic one. It is simpler still to use the sum theorem of Bethe'

2

(8vr'nz/h'y') Q(E„—Ee) dru„re '&*No ———
1

nl
(2.37)

directly. If we apply this directly, we get for the mean energy loss

2' 8
6E

SZC~ p P~ + (2.38)

where f) = (2s./hce) W, and W=k~I is an appropriately chosen mean value of
the energy transferred per impact; and where the integration over y is to be
taken up to the maximum value permitted by the conservation laws. We have
here, however, to consider that the method used in the derivation of(2.25)
is not applicable for large energy losses and large values of p, since it leads
to (1.40a) in place of the correct (1.40). It is easy to correct for this, because
of the fact that when

(2.39)

we may use the calculations of )I for free electrons. Since when (2.39) is
satisfied the conservation laws are fulfilled, we know that in the range
I«B'«inc' we may set

E' = h'y'/8m'm. (2.40)

Thus if we integrate (2.38) up to a y value corresponding to an energy loss E:
I « E « mc' y' = 87r'rrrE/h' (2.41)

we get
bE' = (2rre4/nsc~) ln 8x'mE/h'rl' (2.42)

And we may add to this the mean energy loss given by (1.40) for impacts
involving an energy transfer 8')E)&I. This gives for large e

r E„E4+(E E')4+ E.'4 2xe4 mc'
bE"= II E'dE' — ln + lne+ 9/8 —2ln2

J fr 2E'(E —E')'E" roc' E
(2.43)
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Thus for the total energy loss

SE = SE'+ SE"

2m-e4 mc2
2 ln = + 31n e+ 0.43

mc' S' (2.44)

which is our result for the mean energy loss.
The direct calculation with the model of a hydrogen-like atom gives

(2.44) with the constant

(2.45)

This result gives just half the energy loss we should expect from Bohr's
classical formula it gives twice the range. When e is large we get for the
range R of the particle in a gas containing N electrons per cc

R ' = (4~e'1V/m'c4e) [ln rlc'/8' + (3/2) ln e] (2.46)

where now 8/'is a properly taken average energy of the order of the mean ioni-
zation potential. As e grows large compared with mc'/ W this approaches

E ' ~ (6re4Ã)/(m'c4) ln e/e.

Note: We get an upper limit for the range if we set

(2.47)

BE" =0,
since this means that no large energy losses occur, and since we know that
the neglects of our theory (radiative forces) can have no sensible effect upon
the small energy losses. With 8E"= 0 we get asymptotically

E-"~ kre4$/m'c" ln e/s,

which is four times the distance traveled according to the Klein-Nishina
formula, by a gamma-ray before its first Compton encounter. This range
(2.47) is just one-sixth the distance which (according to the Klein-Nishina
formula) a quantum of energy (ewe') travels, on the average, before its
first Compton encounter. Thus even for the greatest energies a gamma-ray
is, according to theoretical results at present available, more penetrating than
an electron of the same energy. It should be remarked that in the application
of these formulae nuclear electrons may not, presumably, be neglected; they
should be included in counting the total number (Ã) of electrons per cc. But
unless ~ is very large, the contribution of these electrons to the stopping power
will be smaller than that of the extranuclear electrons, since the binding en-

ergy of the former must be of the order of a few million volts. It seems at
present impossible to extend our calculations to the case of electrons bound in

nuclei, because of our ignorance of the nature of that binding. But insofar
as wave mechanics is applicable to such particles, (2.46) should give a reliable
estimate of their effect on a fast electron.
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II I. IMPACTS OF THE MAGNETIC NEUTRON

Ke want now to study in a little more detail the expression which we have
derived for the impact of a magnetic neutron with a free electron. The cross
section for such encounters is given in (1.67) and the somewhat complicated
quantities occurring in this expression are given in (1.69). We shall consider
first and chieHy the case that the neutron has a velocity small compared with
that of light; in this case it will be unable to give the electron a very high
velocity, and we may greatly simplify (1.67) by neglecting higher powers of
&i/c for both particles. The complicated summation of the square of the
numerators of (1.67) then reduces to

and we find from (1.72)

& = 2
I
T-'

I
'+ 2

I T.-'
I

' (3.1)

AT = (1/22d c ) IP' + P' (4r —Srhr + 2(&1r)~) + (Ar)' } . (3.2)

Further the denomination of (1.67) becomes

I
p&i -u& &I = (~r)'+ ~" (3.3)

If we introduce for the ratio of the mass m of the secondary to that of the
neutron

and the further abbreviations

X = rri/M (3.4)

we find

r& = cos&7, P = sin&7, g = [n+ (X' —P')"']/(1+ X), (3.5)

I g'p'+ g'p'[4 —8(1 —g~) + -'(1 —g~) '] + (1 —g~) ']
odn = — gdo, (3.6)h'c' (1 —2g~+ g')'

The energy transferred is

E' = (E/7)(1 —-'g + g'). (3.7)

Several points are at once clear. Since for o.~1, g~1 the cross section be-
haves for small angles like

&rdn dn/(1 —n) dP'/P'

whereas in the case of the Coulomb field it behaved like

dn/(1«) ' dP'/P'.

(3.8)

(3.9)

The mean energy transferred may be computed without considering the
binding of the secondary, since 5E = f&rE'dc& converges. Further, the cross
section is independent of the velocity or energy of the neutron, and the mean
energy loss is directly proportional to the initial energy; finally the cross
section is proportional to the square of the magnetic moment of the neutron.

We shall reduce (3.6) for the case that the neutron has a mass equal to
that of the secondary, X=1, or much smaller, X))1 or much larger X«1.
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X = 1. Here g =n,

(3.10)

The quadrature over the angle of deHection gives for the energy loss

0E = aI"dn = 7 96 ooE (3.11)

where op =16prPe'p'/h'o'. This cross section op may be written

op ——pre4n'/proc', with rl = p/ps; p = eh/4prnzc e (3.12)

where n is the magnetic moment of the neutron measured in Bohr magnetons.
This quantity n is presumably quite small, so that uo is very small indeed. The
expression for the total number of impacts

0 = 0'dA (3 13)

does not converge in the small angles. The preponderance of small energy
losses is not nearly so marked here as for the impacts of an electron; and it is
easy to show, by repeating the familiar nonrelativistic calculations for the
impact of a particle with a bound electron, that the total number of impacts
in which an energy of the order of a few times the binding energy or less in
transferred is finite and independent of the primary energy and corresponds
to a cross section of the order of 00. The total cross section thus turns out to be

o =
jt odo. o.

p {—,
' ln (E/IV) —7/16 } (3. 14)

where I/I/ is of the order of the ionizing energy. The mean energy transferred
per impact is thus

6E/o (E/24) ln E/W. (3.15)

Such a magnetic neutron, quite apart from the great infrequency of its im-
pacts, a factor In'/4pnc' smaller cross section than an electron —will never
produce ion tracks in a cloud chamber, since it tends to lose an appreciable
fraction of its energy, and suffer an appreciable deflection at every impact.

X))1. For this case we find

and for X«1:

o. (op/4) In 2E/XW

"pE = (19/96)opE/X

o = (op/4) ln EI/W

5E = opEX/8,

(3.16)

(3.17)

(3.19)
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In both these cases impacts are relatively rare; in both, the mean energy
loss is necessarily smaller than for equal masses; only for a heavy neutron are
impacts without large deflection possible. If such a neutron as this had a large
magnetic moment, large compared to the Bohr magneton, it could produce
recognizable cloud chamber tracks; but values of n large enough to give this
seem a priori extremely improbable.

The formulae we have given apply equally —especially to the impacts of a
magnetic neutron with a proton or nucleus. They do not account very well for
the phenomena observed in the penetrating radiation from Be bombarded
with alpha-particles. In the first place, such a magnetic neutron would have
more impacts with highly charged nuclei than with protons, whereas the ob-
servations show that this is not so; in the second place the number of impacts
would depend so little on the energy of the neutron, so that it would be hard
to account for the observed inhomogeneous absorption of the radiation.
Finally the distance between impacts would be enormous; with n =10 ' and
X = 1, a neutron of 5.10' volts would travel~100 km before ejecting a visible
proton from paraffin.

One might suppose that in the general case of velocities not small com-
pared to that of light, different and more satisfactory results might be ob-
tained. We have investigated this case only for ) =1, in which case the con-
servation laws give simple algebraic relations between angle of deflection and
final momenta and energy. For this case the total cross section increases with
c, where again Z = &Me' is the initial energy of the neutron, and is of the order.

(3.20)

ln this case e))1, the preponderance of small deflections and relatively small
energy losses is still less marked than in the case of low velocity magnetic
neutrons. When

e & 1n E/W

the electron tends to lose a large part of its energy in each encounter it makes.
Such a neutron could not produce cloud chamber tracks; and since it is cer-
tain on energetic grounds that the radiation from beryllium does not consist
of such neutrons, we have not thought it desirable to give further details in
the evaluation of (1.67).

We believe that these computations show that there is no experimental
evidence for the existence of a particle like the magnetic neutron.


